
OBTAINING STATES INVARIANTS FROM CLASS DIAGRAM IN UML.P

Marcel Lira Gomes∗, Marcelo Udo∗, Tiago Stegun Vaquero†, José Reinaldo Silva†,
Flávio Tonidandel∗

∗ Centro Universitário da FEI
IAAA - Artificial Intelligence Applied in Automation Lab.

São Bernardo do Campo, Brazil
†Escola Politécnica - Universidade de São Paulo

Design Lab. - PMR - Mechatronic and Mechanical Systems Department
São Paulo, Brazil

Emails: mmgomes@fei.edu.br, m_udo@fei.edu.br, tiago.vaquero@poli.usp.br,
reinaldo@usp.br, flaviot@fei.edu.br

Abstract— States invariants can be obtained from implicit knowledge found in planning domains. through
them, planners’ search process and their performance have been improved. There are tools as TIM, DISCOPLAN
and Rintanen that can obtain states invariants from initial state and correct operators of domains described in
PDDL Language. UML.P language also allows a general domain description in the Class Diagram in addition
to the initial state and operators given in the Object Diagrams and State Machine Diagrams. Different from
the known tools, we will show that through an analysis of the Class Diagram we also get states invariants that
further can be used to complement the ones obtained through the analysis of a domain initial state and operators
or even use it to get inconsistencies through a cross validation of the states invariants.

Keywords— UML.P, UML.P Semantics, State Invariants, Domain Validation.

Resumo— Os estados invariáveis podem ser obtidos dos conhecimentos impĺıcitos encontrados em descrições
de domı́nios de planejamento. Através da utilização dos estados inveriáveis, o processo de busca dos planejadores
e sua performance tem sido aperfeiçoados. Existem ferramentas tais como TIM, DISCOPLAN e Rintanen, que
são capazes de obter os estados invariáveis do estado inicial e dos operadores corretos de domı́nios descritos em
PDDL. A UML.P também permite uma descrição geral do domı́nio pelo Diagrama de Classes além do estado
inicial e dos operadores dados pelos Diagramas de Objetos e os Diagramas de Estado de Máquina. Diferentemente
das ferramentas conhecidas, nós iremos mostrar que através da análise do Diagrama de Classes nós também
podemos obter estados invariáveis que futuramente podem ser utilizados para complementar os estados invariáveis
obtidos através da análise do estado inicial e dos operadores de um domı́nio ou até serem utilizados para obter
inconsistências através da análise cruzada dos estados invariáveis.

Keywords— UML.P, Semântica da UML.P, Estados Invariáveis, Validação de Domı́nios.

1 Introduction

At the beginning of the Artificial Intelligence (AI)
planning research domain models used to be sim-
ple and, up to certain point, easily verified. The
desire and necessity to develop domains close to
real problems have let the domains description
more complex and full of information. Follow-
ing these necessities, domain modelling languages
have grown resulting in complex languages with
plenty of resources.

In spite of being the standard model lan-
guage adopted by the AI Planning community, the
PDDL (McDermott, 1998) language is not intu-
itive nor easy to be learned. Modeling a domain
in PDDL is time consuming and difficult for who
does not have familiarity with the language, and
even for who already has, what may turn the lan-
guage improper for a common market use. Several
efforts have been done to ease the development
of domain models, from which UML.P (Vaquero
et al., 2006) has emerged as a promising language
suitable for the AI planning community and pos-
sibly for market use. Moreover, UML.P is based
on UML (Booch et al., 1998) that is widely known
and flexible to describe a large variety of processes

and domains. In collaboration with UML.P, the
ItSimple (Vaquero et al., 2005) Knowledge Engi-
neering play an important role helping users mod-
eling domains intuitively in a friend environment.

Comparing UML.P with PDDL we note that
the former has different resources not available in
the latter. In addition to the resources available to
describe initial and final states and operators, the
UML.P has the Class Diagram that allows a gen-
eral description of a domain. The Class Diagram
gives different kinds of information, including im-
plicit information, that are useful for the process
of planning.

Implicit knowledge found in domain descrip-
tions has been used to speed up planners, aim-
ing the improvement of search process by feed-
ing them with states invariants. States invari-
ants play an important role during the search pro-
cess of a plan, since they can help planners to
avoid redundant analysis and search. Some pre-
planning tool as TIM (Long and Fox, 2000), DIS-
COPLAN (Gerevini and Schubert, 2000) and Rin-
tanen (Rintanen, 2000) are already able to find
correct states invariants from initial states and
operators of correct PDDL domain descriptions.



Further than analyzing operators and initial state,
this paper addresses the extraction of states in-
avriants from UML.P analyzing the Class Dia-
gram. Some of states invariants that we get from
the Class Diagram are Typing Constraints, Simple
Association Constraints, Symmetry Constraints,
Multiplicity Constraints and XOR Constraints.

To show the states invariants extraction, we
start this paper explaining briefly the syntax that
has been developed to the UML.P. A syntax def-
inition is necessary since the UML language have
a semi-formal syntax which can lead to misinter-
pretation of domain descriptions. Next, we show
how the states invariants can be extracted based
on the Class Diagram. We finalize it discussing
the advantages that the Class Diagram knowledge
extraction will bring for the AI Planning commu-
nity, concluding with future works.

2 UML.P
The Unified Modeling Language (UML) is a de
facto industry standard visual language for mod-
eling a wide variety of domain models. Its broad
scope covers a large and diverse set of applica-
tion domains (OMG, 2007). Although its wide
embrace, there is a semantic problem that should
be solved for a successful UML applicability in
AI Planning. Its semantics is defined in infor-
mal written English that can lead to problems of:
misinterpretation, analysis and design (Berardi
et al., 2003). In order to solve this problem
UML.P has been defined as a subset of UML with
a more precise semantic description.

2.1 UML.P Characterization
UML.P does not intend redefine the UML lan-
guage to create domain models for planning, how-
ever, we intend use its definition to support the
AI Planning community with a new language for
modeling domains. For this purpose the seman-
tics of UML.P must be precisely defined by the
light of planning, avoiding any problem of misin-
terpretation. An explanation of each diagram can
be seen in Vaquero et al. (2005).

An AI planner is able to search a plan given a
set of a domain model and domain problem. This
set will be called as Planning System Domain in
UML.P. So the Planning System Domain is com-
pounded by a Planning Domain and a Domain
Problem, Ψ = {PD, DP }.

A planning domain in UML.P is a set of Ab-
stract Domain, Domain’s Objects and all possible
states of a domain (PD = {AD, Obj, S}), how-
ever, the possible states are not listed during the
domain modeling. Domain‘s Objects denominates
a set of all objects that exist in a domain model
(Obj) and the Abstract Domain is the set that
gives the characteristics of the Domain’s Objects.
It is formed by a Class Diagram, State Machine
Diagrams and a set of all Domain Constraints

(AD = {CD, SMD, DC}).
A Domain Problem is a set of Initial State,

Final State and a set of Operators that can be
applied to a domain (DP = {SINI , SFIN , OPP }).
Giving the set of operators that can be applied to
a domain, we can ease the definition of a problem.
To a better comprehension of this feature, suppose
a simple logistics planning domain with a Truck
and an Airplane objects. The only two operators
defined in this simple domain are drive and fly
which belong to Truck and Airplane respectively.
But, if for any reason, the Airplane could not fly,
we should define a new domain model without the
Airplane or without the fly operator. Allowing
the definition of which operators we could use in
a problem, we can ease the process of defining a
problem in a domain.

For the matter of this article, the following
subsection will show briefly only the definition of
the Class Diagram in order to support the states
invariants obtained from this diagram.

2.1.1 Class Diagrams

The Class Diagram describes the static properties
of a system, it is compounded of a set of classes re-
lated by association and generalizations. In Figure
1, there are the primitive diagrammatic elements
allowed in the Class Diagram of the UML.P.

Figure 1: Diagrammatic Objects for Class Dia-
grams

For planning, a class defines a type for a set
of objects that exist in a domain model. The
classes may have attributes and operators proto-
types that characterize them. Note that the oper-
ators are actions that objects of a type may per-
form in a domain. At this point, the operator
prototype does not intend to define the behavior
of an operator, but simply defines their owners.

An association is a relationship that links in-
stances of classes. Note that in UML an associ-
ation may relate more than one pair of classes,
which is not allowed in UML.P. At each relation-
ship’s end there are the multiplicities, which in-
form how many objects can be associated through
an association.

The generalization relationship defines a hier-
archy for the classes related. Note that abstract
classes are not allowed in UML.P since there is no
function for them at this point.



Definition 1 (Class Diagram Set)
CD = {T,At,OP , GR, AR, α, β, δ, φ}, where:

• T = Finite set of Types. A type is any Class
created in the Class Diagram (TABS) or any
primitive type (TPRIM ), that are: Boolean,
Integer and Float;

• At = Finite set of attributes, typed as TPRIM ;
• OP = Finite set of operators prototypes. The

prototypes do not intend to define the behav-
ior of operators, they are all defined in the
State Machine Diagrams;

• GR = Finite set of generalization relation-
ship;

• AR = Finite set of associations relationship;
• α : At → TABS, where α is a function that

relate each attribute to an abstract type;
• β : OP → TABS, where β is a function that

relate each operator prototype to an abstract
type;

• (GR, (TABS × TABS)) ∈ δ, where δ is a set
of generalization (GR) related to pairs of ab-
stract types that Dom(TABS) 6= Img(TABS).

• (AR, (TABS × TABS)) ∈ φ, where φ is the set
of associations (AR) related to pairs of ab-
stract types.

3 Knowledge Extraction
Through a simple analysis of the UML.P language
we notice that there are explicit and implicit in-
formation in each diagram model. Among them
the simplest one that can be easily noticed is the
multiplicity information of an association relation-
ship. Although the simplicity of this state invari-
ant, we can use it and others information to check
if an initial state and a final state are correct,
based on the domain definition. Another impor-
tant verification that we can do is the analysis of
the domain’s operators, checking if any of them
could drive to an unexpected or incorrect state.

The advantage of these verifications is the
possibility to check the internal consistence of a
domain. An automatic analysis will improve the
description time of a domain and also reduce the
number of description errors. In the following sub-
sections we will briefly show the states invariants
that can be extracted from UML.P.

3.1 Typing
TIM and DISCOPLAN tools showed two distinct
processes that infer the type structure from the
initial state and operators. Although these tools
showed a powerful process to get the hierarchy of
a domain, we cannot check automatically if the
initial state and operators were defined correctly,
throwing the hierarchy checking process to a do-
main engineer.

UML.P is a typed language which all objects
belongs to a class. Its structure and hierarchy are

defined in the Class Diagram and it is given dur-
ing the domain description process. The benefits
of this characteristic are easily seen in a broad
domain analysis, which we can check if all ob-
jects are correctly defined in the Initial and Fi-
nal States. In the same way operators can be
checked for the matter of its preconditions and
post-conditions that must have correct values re-
lated to their attributes.

The set δ encloses the hierarchy defined in a
Domain, through the Generalization Relationship
it shows that there are supertypes and subtypes
in the Domain. All types that do not have any
mapping in δ set do not belong to any structure
of classes. This characteristic allows the genera-
tion of states invariants related to the types in a
domain.

Figure 2 shows an example of the Logistics
Class Diagram. From the TABS set of this dia-
gram we get the following types: Package, Place,
Location, Airport, Vehicle, Truck and Airplane.
For simplicity, we will not discuss about the City
type in this paper. Following the characteristic de-
scribed above we can generate the following states
invariants.

∀x.Truck(x)→ V ehicle(x)
∀x.Airplane(x)→ V ehicle(x)
∀x.Location(x)→ Place(x)
∀x.Airport(x)→ Place(x)
∀x.P lace(x)→ ¬V ehicle(x)
∀x.V ehicle(x)→ ¬Place(x)

∀x.Package(x)→ ¬Place(x) ∧ ¬V ehicle
∀x.Location(x)→ ¬Airport(x)
∀x.Airport(x)→ ¬Location(x)
∀x.Airplane(x)→ ¬Truck(x)
∀x.Truck(x)→ ¬Airplane(x)

3.2 Associations
An association defines how two classes relate to
each other, telling us which objects and how an
objects can link to another one. In a Class Di-
agram Set the associations are defined in the φ
set, where associations not related in this set are
not allowed. In short, associations can be seen as
predicates relating objects in AI Planning. As an
example, in Figure 2 we have isAt, isIn, at and
parkedAt associations that can be seen as pred-
icates, so isAt(x,y), isIn(x,y), at(x,y)and parke-
dAt(x,y)which x and y are variables. From the set
definition of φ we also get states invariants that
we will describe in the following subsections.

3.2.1 Simple Association Constraints
As the invariants obtained by DISCOPLAN (Sim-
ple Implicative Constraints), through an analy-
sis of the φ set, it is clear that comparable in-
variants can be obtained from the Class Diagram
in a simple way. To get this kind of invariants
from the Class Diagram we have to note that the
navigability of the association plays an important



Figure 2: Logistics Class Diagram Example

role, which will dictates how the predicates will
be constructed. The navigability is given by the
direction of the arrow that represents an associ-
ation, see Figure 1. From its construction the
association origin and destiny will indicate the
predicate order. So as an example lets get the
at association from Figure 2, its origin is con-
nected to the Truck class and destiny on the Place
class, what will get the following state invariant
∀x, y.at(x, y) → Truck(x) ∧ Place(y). Below we
list others invariants obtained from Figure 2.

∀x, y.isAt(x, y)→ Package(x) ∧ Place(y)
∀x, y.isIn(x, y)→ Package(x) ∧ V ehicle(y)

∀x, y.parkedAt(x, y)→ Airplane(x) ∧Airport(y)

There are some domain descriptions that al-
ready enclosures these features in predicate decla-
ration.

3.2.2 Symmetry Constraints
As the Simple Association Constraints, through
the φ set we also obtain Symmetry Constraints,
which TIM and DISCOPLAN obtain them ana-
lyzing the domain operators. A Symmetry Con-
straint tells if a pair of objects can relate to each
other by the same link, e.g. from the Figure 2 the
association isIn tells that some packages can be
in a vehicle but the contrary, a vehicle can be in
some packages, is not true. From the association
direction defined in the φ set we get the following
constraints.

∀x, y.isAt(x, y)→ ¬isAt(y, x)
∀x, y.isIn(x, y)→ ¬isIn(y, x)
∀x, y.at(x, y)→ ¬at(y, x)

∀x, y.parkedAt(x, y)→ ¬parkedAt(y, x)

Although most of the associations have their
origin and destiny, there are cases that associa-
tions do not have an origin and a destiny. In this
case the association tells that independently of the
objects origin or destiny the link is valid. As an

example, suppose a domain that has an associ-
ation called beside without any indication of its
origin or destiny. The Symmetry Constraint ob-
tained from this association is ∀x, y.beside(x, y)→
beside(y, x).

This symmetry is very important to speed up
any planner system. Symmetries can help the
planners to avoid redundant analysis and search
and this kind is not straightforward available in
domain description.

3.2.3 Multiplicity Constraints
Multiplicity is an association property that in-
forms how many links of the same kind can occur
at same time between objects. Except for associ-
ations that have multiplicity unlimited (0..* and
* ) at both ends, there must exist at least one op-
erator that change the domain state adding these
links between objects and one operator that sub-
tract them. This operators checking is automatic,
which will prevent any careless at design time.

From associations having one of its ends with
multiplicity equal to one, we get identity invari-
ants. DISCOPLAN and TIM also obtain these
invariants through the analysis of a domain de-
scription. Different from the process developed
by them, through UML.P the extraction of this
invariants are directly obtained from the φ set.
As an example, lets get the parkedAt associa-
tion from Figure 2, this association informs that
none or plenty airplanes can park at an air-
port. So from this assertion we can conclude that
∀x, y, z.ParkedAt(x, y) ∧ ParkedAt(x, z) → y =
z. Note that this invariant is true just because one
of the association end is one, otherwise we would
not conclude this invariant. Below follows the oth-
ers identity invariants obtained from Figure 2.

∀x, y, z.isAt(x, y) ∧ isAt(x, z)→ y = z
∀x, y, z.isIn(x, y) ∧ isIn(x, z)→ y = z
∀x, y, z.At(x, y) ∧At(x, z)→ y = z



3.2.4 XOR Constraints
All associations related to supertypes of a domain
can be split to all its subtypes without losing its
characteristics, e.g. from Figure 2 the association
isAt relates the class Package and Place . Note
that the class Place is the supertype of Location
and Airport , so the isAt association can be split
to the classes Location and Airport . It gives that
some packages are at a Location and some pack-
ages are at an Airport.

The split associations that have any of their
ends multiplicity equal to one revels an exclusive
link between the associations. So from the Figure
2 the isAt link does not relate an object to oth-
ers objects that have the same supertype. From
this UML.P characteristic, we get the following
constraints.

∀ x: Package, y: Location, z: Airport. isAt(x,y)
XOR isAt(x,z)

∀ x: Package, y: Truck, z: Airport. isIn(x,y)
XOR isIn(x,z)

DISCOPLAN also obtain XOR invariants
from the analysis of the domain description. But
at this point, we do not get all XOR constraints
since we need to analyze the State Machine Dia-
grams to obtain more XOR constraints. In fact,
DISCOPLAN extracts all XOR constraints from
actions definitions in a PDDL model, while our
knowledge extraction can obtain some of these
XOR constraints directly from Class Diagram,
without use actions definitions in State Machine
Diagrams.

4 Discussion and Future Works
For a successful AI planning, a domain model
should be consistent with actions description free
of errors. Today domain model validation is a bur-
den that has few tools to support the domain engi-
neers. The consistency checking mainly depends
on the designer to verify all domain description
looking for possible errors.

TIM, DISCOPLAN and Rintanen tools in-
tend to help domain engineers to find domain er-
rors, however, they are not developed for this pur-
pose. Although these tools are able to get states
invariants, one or more sentences extracted may
be incorrect if the domain description has any in-
correct statement based on the domain logics. So,
the domain engineer has to check all the sentences
extracted by the tools and if any of them were log-
ically incorrect, he will have to find the error, since
the tools do not indicate its origin. Although these
tools are not suitable to find errors in domain de-
scriptions, the main lack is from the available lan-
guages that do not have suitable structure for re-
dundant information, which would allow a cross
information analysis to validate a domain.

A different approach can be applied to
UML.P, mainly because its structure supports re-
dundant information. This characteristic is easily

seen in both main diagrams that root UML.P, the
Class Diagram and the State Machine Diagram.
As seen in this paper, through an analysis of the
Class Diagram we can get states invariants as Typ-
ing Constraints, Simple Association Constraints,
Symmetry Constraints, Multiplicity Constraints
and XOR Constraints.

In the same way we also could get states
invariants from the State Machine Diagram.
Through a cross validation with the information
extracted from the Class Diagram and State Ma-
chine Diagram we could find inconsistencies on
the domain actions and structures. Implement-
ing these methods would allow the ItSimple tool
alerts the domain designer for potential errors and
inconsistencies in a domain.

5 Conclusion
It is clear that UML.P is a powerful visual lan-
guage with plenty of resources for AI Planning
Community. But the lack of a formal semantics
let the language fragile for use. Focused on this
issue we are defining a formal semantic that will
give a solid base for the use of the language in AI
planning. Although the explanation given here,
we still have to finish some proofs that are in-
complete due to the development of the UML.P
semantics. The development of the UML.P se-
mantics is revealing other important characteris-
tics that will improve the process of domain vali-
dation and knowledge acquisition for AI Planning
community.

References
Berardi, D., Cal, A., Calvanese, D. and

Giacomo, G. D. (2003). Reasoning
on uml class diagrams. Available at
http://citeseer.ist.psu.edu/article
/berardi03reasoning.html.

Booch, G., Rumbaugh, J. and Jacobson, I. (1998).
The Unified Modeling Language User Guide,
Addison-Wesley.

Gerevini, A. and Schubert, L. (2000).
Discovering state constraints in dis-
coplan: Some new results, AAAI
Press, pp. 761–767. Available at cite-
seer.comp.nus.edu.sg/gerevini00discovering
.html.

Long, D. and Fox, M. (2000). Auto-
matic synthesis and use of generic types
in planning, Artificial Intelligence Plan-
ning Systems, pp. 196–205. Available at
http://citeseer.ist.psu.edu/long00automatic
.html.

McDermott, D. (1998). Pddl — the plan-
ning domain definition language, cite-
seer.ist.psu.edu/mcdermott97pddl.html.



OMG, O. M. G. (2007). Unified model-
ing language: Infrastructure. Available
at http://www.omg.org/docs/formal/07-02-
04.pdf.

Rintanen, J. (2000). An iterative algorithm
for synthesizing invariants, AAAI/IAAI,
pp. 806–811.

Vaquero, T. S., Tonidandel, F., de Bar-
ros, L. N. and Silva, J. R. (2006).
On the use of uml.p for modeling a
real application as a planning problem.
Available at http://www.pmr.poli.usp.br/d-
lab/artigos/ICAPS0602VaqueroT.pdf.

Vaquero, T. S., Tonidandel, F. and Silva,
J. R. (2005). The itsimple tool for
modeling planning domains, ICAPS
2005 Competition on Knowledge Engi-
neering for Planning and Scheduling,
Monterey, California, USA. Available at
http://scom.hud.ac.uk/scomtlm/competition
/papers/paper5.pdf.


